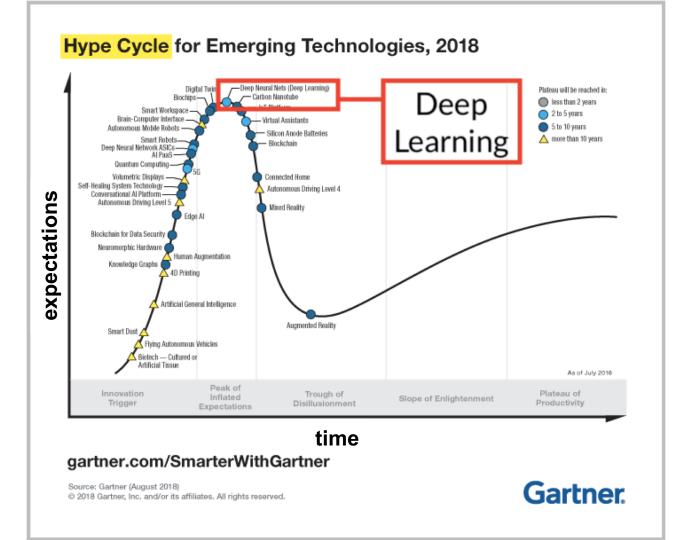
# Mad Max: Affine Spline Insights into Deep Learning

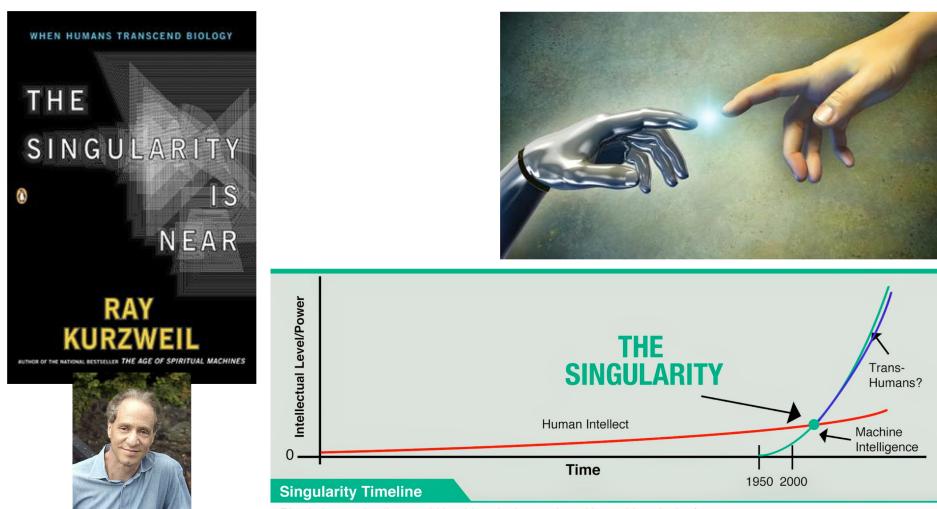
#### Richard Baraniuk

RICE UNIVERSITY









Rise in human intellect could be driven by integrating with machines in the future



# greek questions for the babylonians

- Why is deep learning so **effective**?
- Can we derive deep learning systems from **first principles**?
- When and why does deep learning **fail**?
- How can deep learning systems be improved and extended in a **principled** fashion?
- <u>Where is the **foundational framework** for theory</u>?

See also Mallat, Soatto, Arora, Poggio, Tishby, [growing community] ...

# splines **Selection** and deep learning



R. Balestriero & B "A Spline Theory of Deep Networks," *ICML* 2018 "Mad Max: Affine Spline Insights into Deep Learning," arxiv.org/abs/1805.06576, 2018 "From Hard to Soft: Understanding Deep Network Nonlinearities...," *ICLR* 2019 "A Max-Affine Spline Perspective of RNNs," *ICLR* 2019 (w/ J. Wang)

# prediction problem

• Unknown function/operator f mapping data to labels

$$\mathbf{y} = f(\mathbf{x})$$
  
 $\uparrow$   $\uparrow$   
abel data (signal, image, video, ...)

• Goal: Learn an approximation to f using training data

$$\widehat{\mathbf{y}} = f_{\Theta}(\mathbf{x}) \qquad \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^n$$

#### deep nets approximate

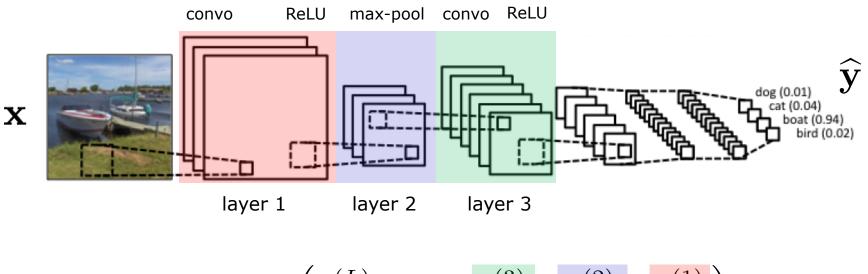
• Deep nets solve a **function approx** problem (black box)



$$\widehat{\mathbf{y}} = f_{\Theta}(\mathbf{x})$$

#### deep nets approximate

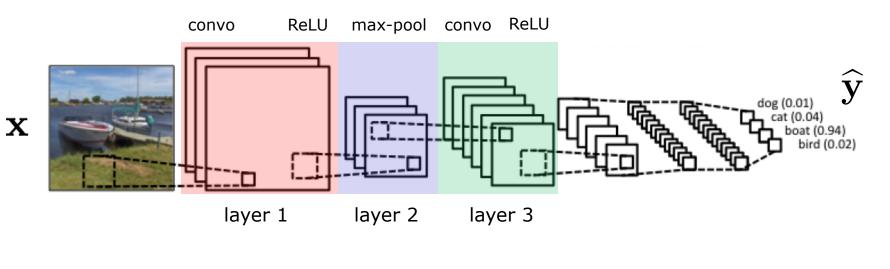
• Deep nets solve a **function approx** problem **hierarchically** 



$$\widehat{\mathbf{y}} = f_{\Theta}(\mathbf{x}) = \left( f_{\theta^{(L)}}^{(L)} \circ \cdots \circ f_{\theta^{(3)}}^{(3)} \circ f_{\theta^{(2)}}^{(2)} \circ f_{\theta^{(1)}}^{(1)} \right) (\mathbf{x})$$

## deep nets and splines

 Deep nets solve a function approx problem hierarchically using a very special family of splines



$$\widehat{\mathbf{y}} = f_{\Theta}(\mathbf{x}) = \left( f_{\theta^{(L)}}^{(L)} \circ \cdots \circ f_{\theta^{(3)}}^{(3)} \circ f_{\theta^{(2)}}^{(2)} \circ f_{\theta^{(1)}}^{(1)} \right) (\mathbf{x})$$

## deep nets and splines

#### Piecewise convexity of artificial neural networks

Blaine Rister<sup>a,\*</sup>, Daniel L. Rubin<sup>b</sup>

<sup>a</sup> Stanford University, Department of Electrical Engineering, 1201 Welch Rd, Stanford, CA, 94305, USA
 <sup>b</sup> Stanford University, Department of Radiology (Biomedical Informatics Research), 1201 Welch Rd Stanford, CA, 94305, USA

#### On the Number of Linear Regions of Deep Neural Networks

Guido Montúfar Max Planck Institute for Mathematics in the Sciences montufar@mis.mpg.de Razvan Pascanu Université de Montréal pascanur@iro.umontreal.ca

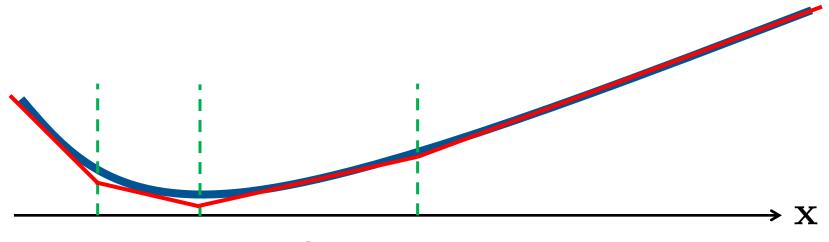
Kyunghyun Cho Université de Montréal kyunghyun.cho@umontreal.ca Yoshua Bengio Université de Montréal, CIFAR Fellow yoshua.bengio@umontreal.ca

#### A representer theorem for deep neural networks

Michael Unser

# spline approximation

- A **spline** function approximation consists of
  - a **partition**  $\Omega$  of the independent variable (input space)
  - a (simple) **local mapping** on each region of the partition (our focus: piecewise-affine mappings)



# spline approximation

- A spline function approximation consists of
  - a **partition**  $\Omega$  of the independent variable (input space)
  - a (simple) **local mapping** on each region of the partition

#### • Powerful splines

- free, unconstrained partition  $\Omega$  (ex: "free-knot" splines)
- jointly optimize both the partition and local mappings (highly nonlinear, computationally intractable)

#### • Easy splines

- fixed partition (ex: uniform grid, dyadic grid)
- need only optimize the local mappings

# max-affine spline (MAS)

[Magnani & Boyd, 2009; Hannah & Dunson, 2013]

- Consider piecewise-affine approximation of a convex function over R regions
- $a_r^\mathsf{T}\mathbf{x} + b_r, \quad r = 1, \dots, R$ - Affine functions:  $z(\mathbf{x}) = \max_{r=1,\dots,R} a_r^{\mathsf{T}} \mathbf{x} + b_r$ - Convex approximation:  $(a_4, b_4)$ R = 4 $(a_1, b_1)$  $(a_3, b_3)$  $(a_2, b_2)$

# max-affine spline (MAS)

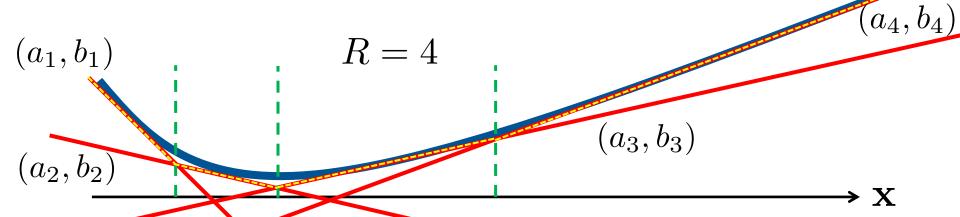
[Magnani & Boyd, 2009; Hannah & Dunson, 2013]

 $z(\mathbf{x}) = \max_{r=1,\dots,R} a_r^{\mathsf{T}} \mathbf{x} + b_r$ 

• Key: Any set of affine parameters  $(a_r, b_r), r = 1, \ldots, R$  implicitly determines a spline partition

– Affine functions: 
$$a_r^\mathsf{T}\mathbf{x} + b_r, \quad r = 1, \dots, R$$

Convex approximation:

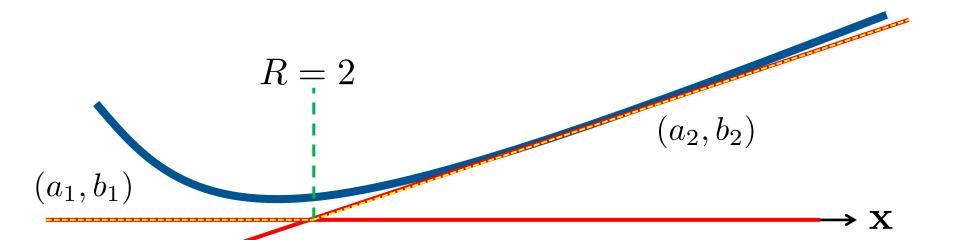


## scale + bias | ReLU is a MAS

- Scale x by a + bias b | ReLU:  $z(x) = \max(0, ax + b)$ 
  - Affine functions:

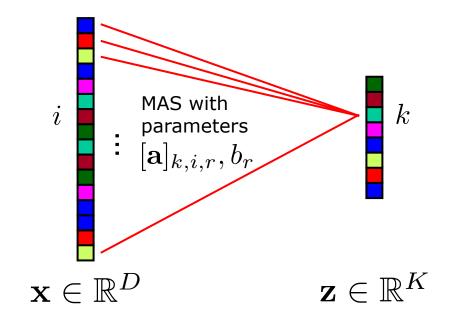
- $(a_1, b_1) = (0, 0), \ (a_2, b_2) = (a, b)$
- Convex approximation:

$$z(\mathbf{x}) = \max_{r=1,2} a_r^\mathsf{T} \mathbf{x} + b_r$$



# max-affine spline operator (MASO)

- MAS for  $\mathbf{x} \in \mathbb{R}^D$  has affine parameters  $\mathbf{a}_r \in \mathbb{R}^D, b_r \in \mathbb{R}$
- A MASO is simply a concatenation of *K* MASs



# modern deep nets

• Focus: The lion-share of today's deep net architectures (convnets, resnets, skip-connection nets, inception nets, recurrent nets, ...)

 $\mathbf{X}$ 

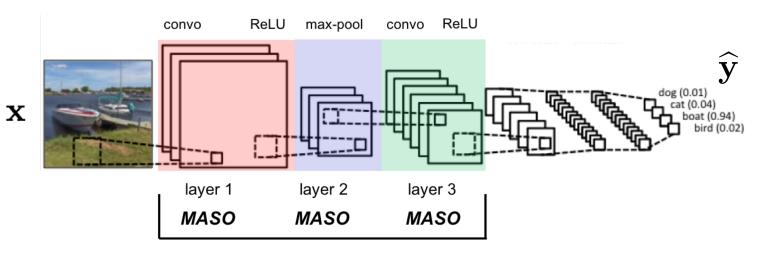
employ piecewise linear (affine) layers

(fully connected, conv; (leaky) ReLU, abs value; max/mean/channel-pooling)

convo ReLU ReLU max-pool convo layer 1 layer 2 layer 3  $\widehat{\mathbf{y}} = f_{\Theta}(\mathbf{x}) = \left( f_{\theta^{(L)}}^{(L)} \circ \cdots \circ f_{\theta^{(3)}}^{(3)} \circ f_{\theta^{(2)}}^{(2)} \circ f_{\theta^{(1)}}^{(1)} \right) (\mathbf{x})$ 

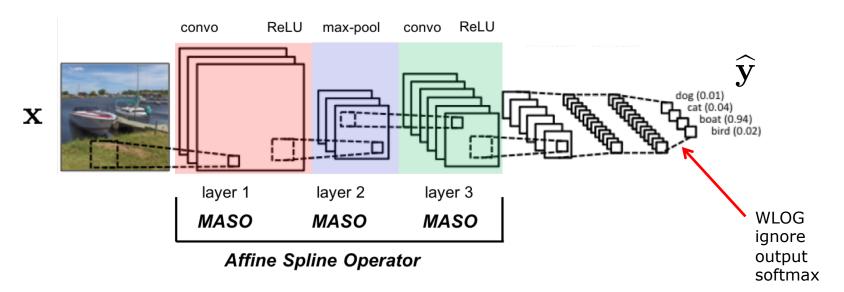
#### theorems

- Each deep net **layer** is a **MASO** 
  - **convex** wrt each output dimension, piecewise-affine operator



#### theorems

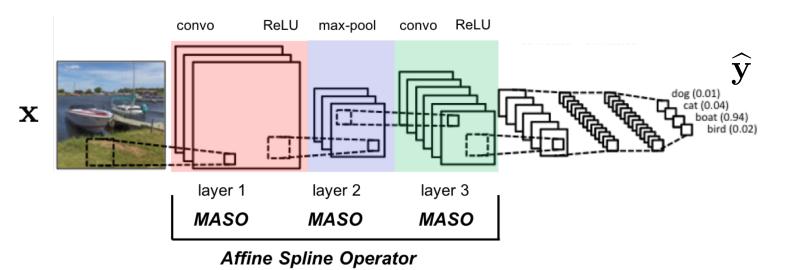
- Each deep net layer is a MASO
  - convex, piecewise-affine operator



- A deep net is a **composition of MASOs** 
  - non-convex piecewise-affine spline operator

#### theorems

- A deep net is a **composition of MASOs** 
  - non-convex piecewise-affine spline operator

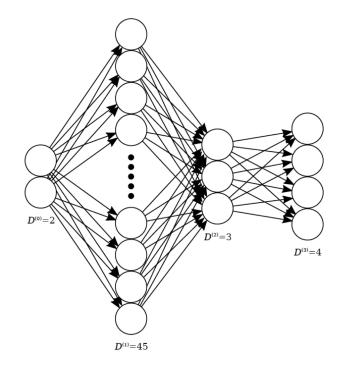


• A deep net is a convex MASO iff the convolution/fully connected weights in all but the first layer are nonnegative and the intermediate nonlinearities are nondecreasing

- The parameters of each deep net layer (MASO) induce a partition of its input space with convex regions
  - vector quantization (info theory)
  - k-means (statistics)
  - Voronoi tiling (geometry)

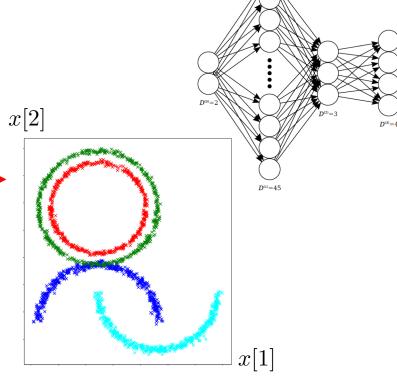
- The *L* layer-partitions of an *L*-layer deep net combine to form the **global input signal space partition** 
  - affine spline operator
  - non-convex regions

- Toy example: **3-layer "deep net"** 
  - Input **x**: 2-D (4 classes)
  - Fully connected | ReLU (45-D output)
  - Fully connected | ReLU (3-D output)
  - Fully connected | (softmax) (4-D output)
  - Output **y**: 4-D



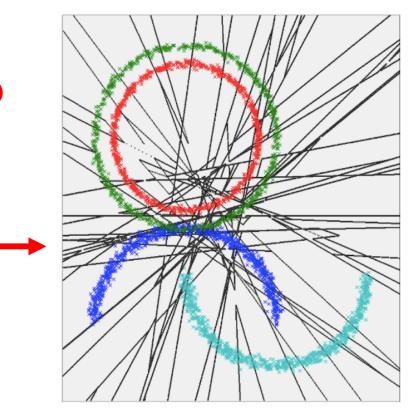
- The *L* layer-partitions of an *L*-layer deep net combine to form the global input signal space partition
  - affine spline operator
  - non-convex regions

- Toy example: 3-layer "deep net"
  - Input x: 2-D (4 classes)
  - Fully connected | ReLU (45-D output)
  - Fully connected | ReLU (3-D output)
  - Fully connected | (softmax) (4-D output)
  - Output **y**: 4-D



- Toy example: 3-layer "deep net"
  - Input **x**: 2-D (4 classes)
  - Fully connected | ReLU (45-D output)
  - Fully connected | ReLU (3-D output)
  - Fully connected | (softmax) (4-D output)
  - Output **y**: 4-D

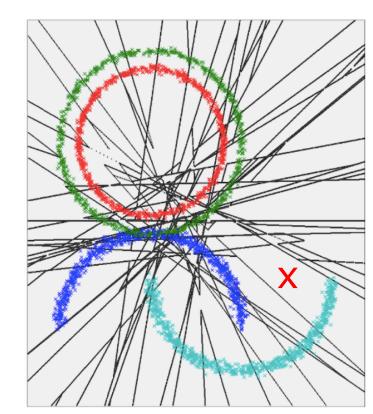
- VQ partition of layer 1 depicted in the input space
  - **convex** regions



- Toy example: 3-layer "deep net"
  - Input **x**: 2-D (4 classes)
  - Fully connected | ReLU (45-D output)
  - Fully connected | ReLU (3-D output)
  - Fully connected | (softmax) (4-D output)
  - Output **y**: 4-D

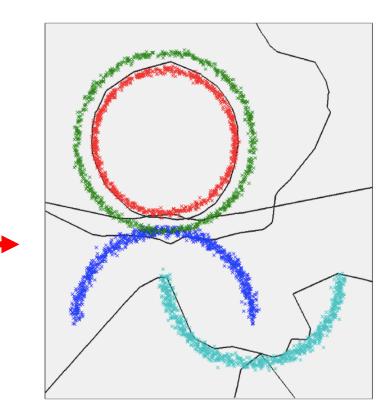
• Given the partition region  $Q(\mathbf{x})$ containing  $\mathbf{x}$  the layer input/output mapping is affine

$$\mathbf{z}(\mathbf{x}) = \mathbf{A}_{Q(\mathbf{x})}\mathbf{x} + \mathbf{b}_{Q(\mathbf{x})}$$



- Toy example: 3-layer "deep net"
  - Input **x**: 2-D (4 classes)
  - Fully connected | ReLU (45-D output)
  - Fully connected | ReLU (3-D output)
  - Fully connected | (softmax) (4-D output)
  - Output **y**: 4-D

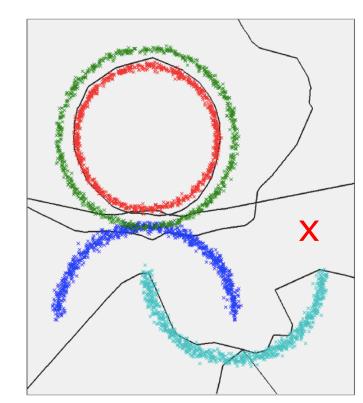
- VQ partition of layer 2 depicted in the input space
  - **non-convex** regions due to visualization in the input space



- Toy example: 3-layer "deep net"
  - Input **x**: 2-D (4 classes)
  - Fully connected | ReLU (45-D output)
  - Fully connected | ReLU (3-D output)
  - Fully connected | (softmax) (4-D output)
  - Output **y**: 4-D

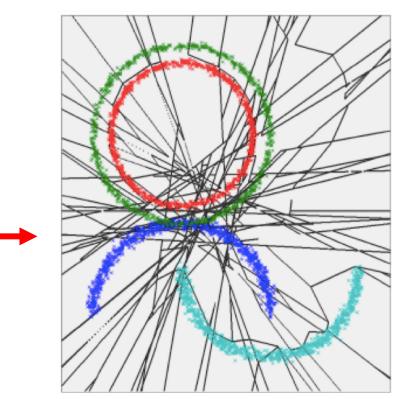
• Given the partition region  $Q(\mathbf{x})$ containing  $\mathbf{x}$  the layer input/output mapping is affine

$$\mathbf{z}(\mathbf{x}) = \mathbf{A}_{Q(\mathbf{x})}\mathbf{x} + \mathbf{b}_{Q(\mathbf{x})}$$



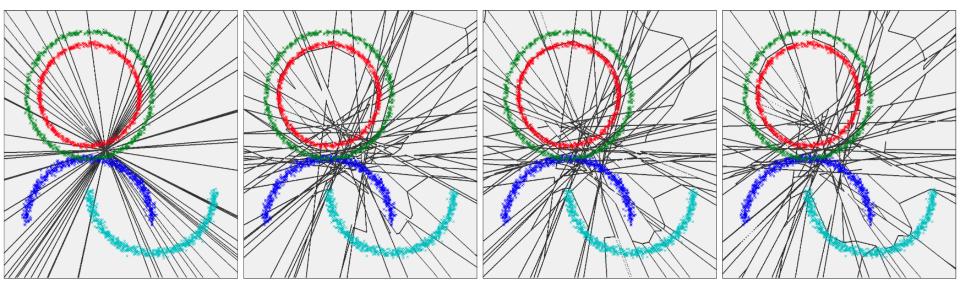
- Toy example: "Deep" net layer
  - Input **x**: 2-D (4 classes)
  - Fully connected | ReLU (45-D output)
  - Fully connected | ReLU (3-D output)
  - Fully connected | (softmax) (4-D output)
  - Output **y**: 4-D

- VQ partition of layers 1 & 2 depicted in the input space
  - **non-convex** regions



# learning

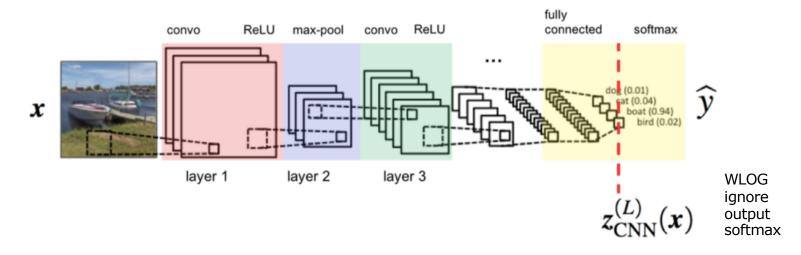
layers 1 & 2



learning epochs (time)

# local affine mapping – CNN

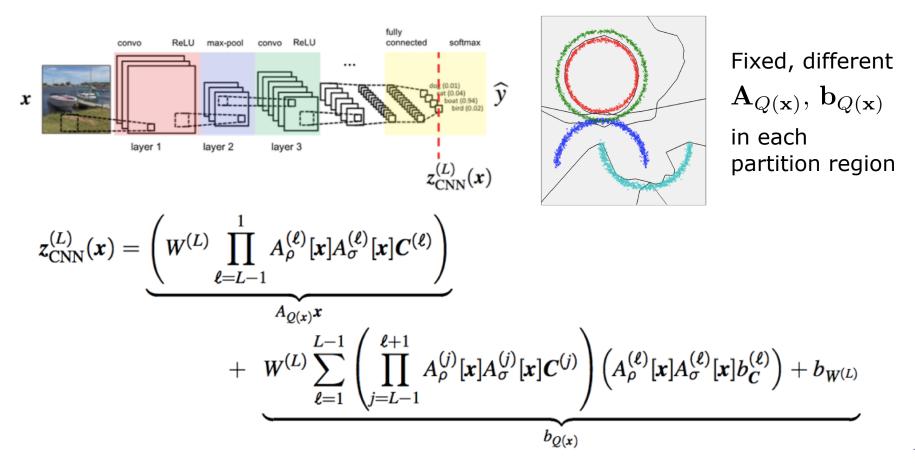
**Example:** Classical CNN architecture with conv/ReLU/max-pooling layers terminating in a linear classifier comprising one fully connected layer and softmax



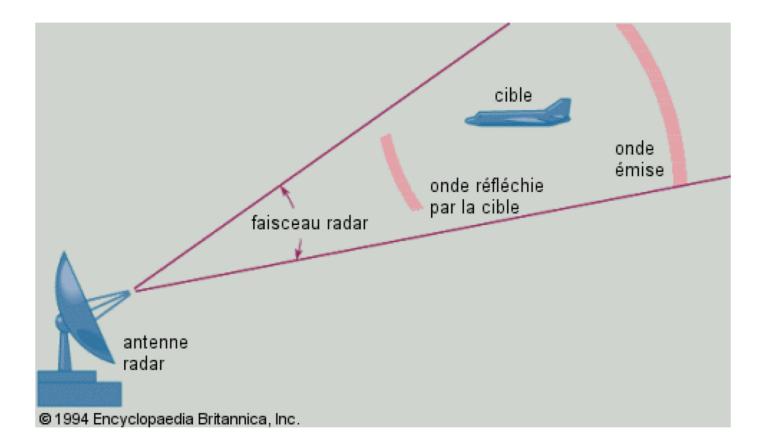
**Result** Input (x) to output  $(z_{CNN}^{(L)}(x))$  mapping is a **region-dependent affine** transform

$$\boldsymbol{z}_{\text{CNN}}^{(L)}(\boldsymbol{x}) = A_{Q(\boldsymbol{x})} \boldsymbol{x} + b_{Q(\boldsymbol{x})}[\boldsymbol{x}]$$

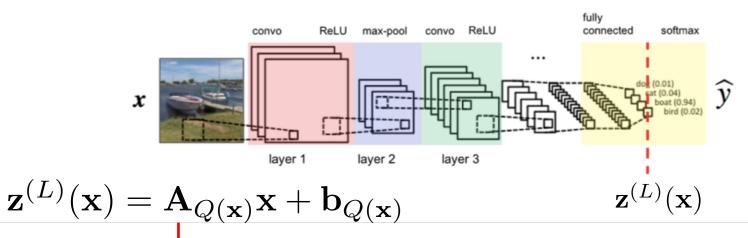
# local affine mapping – CNN

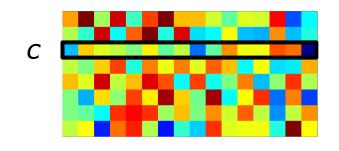


#### matched filters



# deep nets are matched filterbanks





- Row c of  $\mathbf{A}_{Q(\mathbf{x})}$  is a vectorized signal/image corresponding to class c
- Entry c of deep net output = inner product between row c and signal
- For classification, select largest output; matched filter!

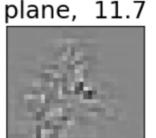
# deep nets are matched filterbanks

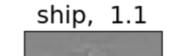
**Result** Row c of  $A_{Q(x)}$  is a **matched filter** for class c that is applied to x; largest inner product wins

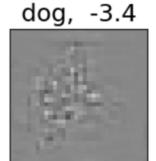
Visualization for CIFAR10: Row of  $A_{net}[x]$ , inner product with x

Input *x* 









(Converted to black & white for ease of visualization)

Matched filter can be interpreted as being applied hierarchically thru the layers

Link with saliency maps [Simonyan et al., 2013; Zeiler & Fergus, 2014]

## data memorization

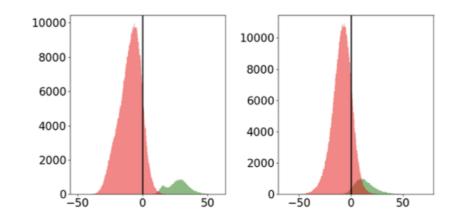
**Result** Matched filters of an infinite capacity deep net **memorize the training data**  $\{(x_n, y_n)\}_{n=1}^N$ 

row c of 
$$A_{Q(\mathbf{x}_n)} = \begin{cases} +\sqrt{\frac{(C-1)\alpha}{C}} \mathbf{x}_n, & c = y_n \text{ (correct class)} \\ -\sqrt{\frac{\alpha}{C(C-1)}} \mathbf{x}_n, & c \neq y_n \text{ (incorrect class)} \end{cases}$$

Experiment with MNIST, CIFAR10

Inner products between training image  $x_n$  and rows of  $A_{net}[x_n]$ 

- green: correct class (large positive)
- red: incorrect classes (large negative)

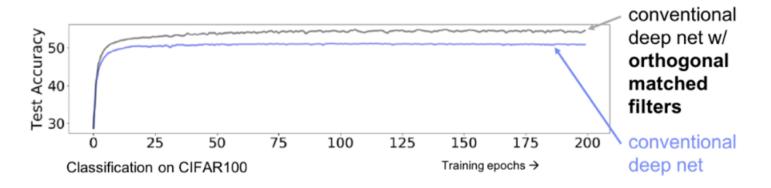


# orthogonal deep nets

Matched filter classifier is optimal only for signal + white Gaussian noise (idealized)

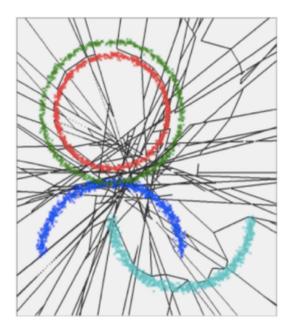
For more general noise/nuisance models, useful to **orthogonalize** the matched filters [Eldar and Oppenheim, 2001]

**Result** Easy to do with any deep net thanks to the affine transformation formula; simply add to the cost function a **penalty on the off-diagonal entries** of  $W^{(L)}(W^{(L)})^T$ 



Bonus: Reduced overfitting

# partition-based signal distance



Capture the geometry of the data space by measuring the **distance between the partition regions** inhabited by two signals  $x_1$  and  $x_2$ 

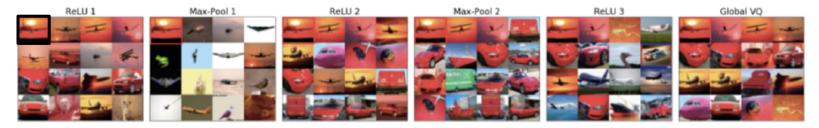
Use Hamming distance between the codewords  $Q(x_1)$  and  $Q(x_2)$ 

Easily computed in terms of **activation patterns** of ReLU/max-pooling layers

Links with distance between **vector quantization** encodings

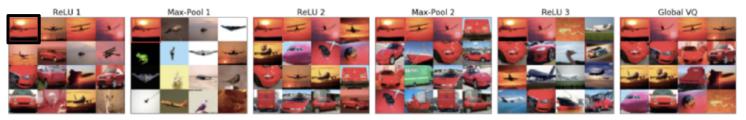
## partition-based signal distance

15 nearest neighbors of a test image (upper left) using spline partition (VQ) distance

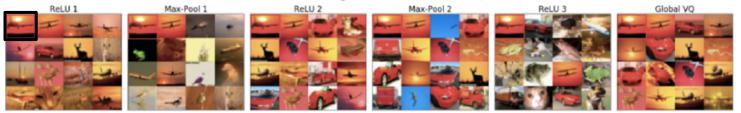


# partition-based signal distance

#### 15 nearest neighbors of a test image (upper left) using spline partition (VQ) distance



(a) Training with correct labels



#### (b) Training with random labels



## additional directions

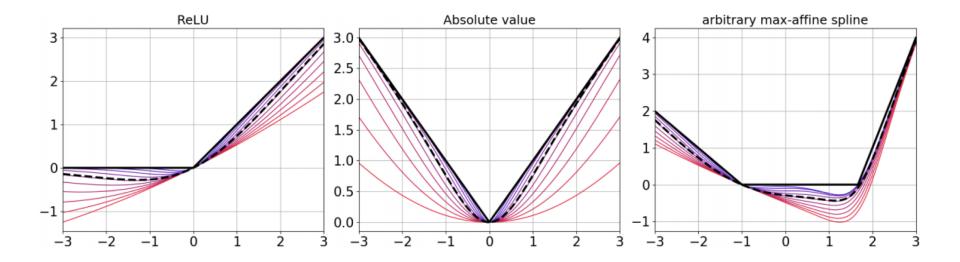
• Study the **geometry** of deep nets and signals via VQ partition

 Affine input/output formula enables explicit calculation of the Lipschitz constant of a deep net for the analysis of stability, adversarial examples, ...

• Theory covers many **recurrent** neural networks (RNNs)

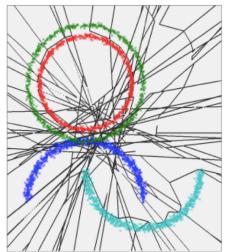
## additional directions

- Theory extends to non-piecewise-affine operators (ex: sigmoid) by replacing the "hard VQ" of a MASO with a "soft VQ"
  - soft-VQ can generate **new nonlinearities** (ex: swish)



#### summary

- A wide range of deep nets solve function approximation problems using a composition of max-affine spline operators (MASOs)
  - links to vector quantization, k-means, Voronoi tiling
- Input/output deep net mapping is a **VQ-dependent affine transform** 
  - enables explicit calculation of the Lipschitz constant of a deep net for the analysis of stability, adversarial examples, . . .
- Deep nets are (learned) matched filterbanks
  - new insights into dataset memorization
- Theory is **constructive** 
  - inspires orthogonalized deep nets
  - new geometric distance via Hamming-VQ distance





# max-affine **splines and deep learning**



R. Balestriero & B "A Spline Theory of Deep Networks," *ICML* 2018 "Mad Max: Affine Spline Insights into Deep Learning," arxiv.org/abs/1805.06576, 2018 "From Hard to Soft: Understanding Deep Network Nonlinearities...," *ICLR* 2019 "A Max-Affine Spline Perspective of RNNs," *ICLR* 2019 (w/ J. Wang)