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greek questions for the babylonians

• Why is deep learning so effective?

• Can we derive deep learning systems from first principles?

• When and why does deep learning fail?

• How can deep learning systems be improved and extended 
in a principled fashion?

• Where is the foundational framework for theory?

See also Mallat, Soatto, Arora, Poggio, Tishby, [growing community] …



splines 
and deep learning

R. Balestriero & B
“A Spline Theory of Deep Networks,” ICML 2018
“Mad Max: Affine Spline Insights into Deep Learning,” arxiv.org/abs/1805.06576, 2018
“From Hard to Soft: Understanding Deep Network Nonlinearities…,” ICLR 2019
“A Max-Affine Spline Perspective of RNNs,” ICLR 2019 (w/ J. Wang)



prediction problem

• Unknown function/operator     mapping data to labels

• Goal: Learn an approximation to     using training data

y = f(x)

data (signal, image, video, …)label
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deep nets approximate

• Deep nets solve a function approx problem (black box)
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deep nets approximate

• Deep nets solve a function approx problem hierarchically

convoconvo ReLU max-pool ReLU

layer 1 layer 2 layer 3
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deep nets and splines

convoconvo ReLU max-pool ReLU

layer 1 layer 2 layer 3

b
y = f⇥(x) =

⇣
f (L)
✓(L) � · · · � f

(3)
✓(3) � f

(2)
✓(2) � f

(1)
✓(1)

⌘
(x)

• Deep nets solve a function approx problem hierarchically 
using a very special family of splines

by



deep nets and splines



spline approximation
• A spline function approximation consists of

– a partition Ω of the independent variable (input space) 
– a (simple) local mapping on each region of the partition

(our focus: piecewise-affine mappings)

x

Ω



spline approximation
• A spline function approximation consists of

– a partition Ω of the independent variable (input space) 
– a (simple) local mapping on each region of the partition

• Powerful splines 
– free, unconstrained partition Ω (ex: “free-knot” splines)
– jointly optimize both the partition and local mappings 

(highly nonlinear, computationally intractable) 

• Easy splines
– fixed partition (ex: uniform grid, dyadic grid) 
– need only optimize the local mappings 



max-affine spline (MAS)

• Consider piecewise-affine approximation of 
a convex function over R regions

– Affine functions:

– Convex approximation:

[Magnani & Boyd, 2009; Hannah & Dunson, 2013] 

aTr x+ br, r = 1, . . . , R

z(x) = max

r=1,...,R
aTr x+ br

(a1, b1)

(a2, b2)

(a4, b4)

x

R = 4

(a3, b3)



max-affine spline (MAS)

• Key: Any set of affine parameters
implicitly determines a spline partition

– Affine functions:

– Convex approximation:

[Magnani & Boyd, 2009; Hannah & Dunson, 2013] 

aTr x+ br, r = 1, . . . , R

z(x) = max

r=1,...,R
aTr x+ br

(a1, b1)

(a2, b2)
(a3, b3)

(a4, b4)

x

R = 4

(ar, br), r = 1, . . . , R



scale + bias | ReLU is a MAS

• Scale x by a + bias b | ReLU:

– Affine functions:

– Convex approximation:

(a1, b1)

(a2, b2)

x

z(x) = max(0, ax+ b)

(a1, b1) = (0, 0), (a2, b2) = (a, b)

z(x) = max

r=1,2
aTr x+ br

R = 2



max-affine spline operator (MASO)
• MAS for                has affine parameters  

• A MASO is simply a concatenation of K MASs

x 2 RD ar 2 RD, br 2 R

x 2 RD z 2 RK

… MAS with
parametersi k

[a]k,i,r, br



modern deep nets
• Focus: The lion-share of today’s deep net architectures

(convnets, resnets, skip-connection nets, inception nets, recurrent nets, …)

employ piecewise linear (affine) layers
(fully connected, conv; (leaky) ReLU, abs value; max/mean/channel-pooling)

convoconvo ReLU max-pool ReLU

layer 1 layer 2 layer 3
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theorems
• Each deep net layer is a MASO 

– convex wrt each output dimension, piecewise-affine operator

by



theorems
• Each deep net layer is a MASO 

– convex, piecewise-affine operator

• A deep net is a composition of MASOs
– non-convex piecewise-affine spline operator 

by
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theorems
• A deep net is a composition of MASOs

– non-convex piecewise-affine spline operator 

• A deep net is a convex MASO iff the convolution/fully connected weights in 
all but the first layer are nonnegative and the intermediate nonlinearities are nondecreasing 

by



MASO spline partition

• The parameters of each deep net layer (MASO) induce a 
partition of its input space with convex regions 

– vector quantization (info theory) 
– k-means (statistics)
– Voronoi tiling (geometry) 



• The L layer-partitions of an L-layer deep net combine to form 
the global input signal space partition 
– affine spline operator
– non-convex regions

• Toy example:  3-layer “deep net”
– Input x:  2-D (4 classes)
– Fully connected | ReLU (45-D output)
– Fully connected | ReLU (3-D output)
– Fully connected | (softmax) (4-D output)
– Output y: 4-D

MASO spline partition



• The L layer-partitions of an L-layer deep net combine to form 
the global input signal space partition 
– affine spline operator
– non-convex regions

• Toy example:  3-layer “deep net”
– Input x:  2-D (4 classes)
– Fully connected | ReLU (45-D output)
– Fully connected | ReLU (3-D output)
– Fully connected | (softmax) (4-D output)
– Output y: 4-D

MASO spline partition

x[1]

x[2]



MASO spline partition

• Toy example:  3-layer “deep net”
– Input x:  2-D (4 classes)
– Fully connected | ReLU (45-D output)
– Fully connected | ReLU (3-D output)
– Fully connected | (softmax) (4-D output)
– Output y: 4-D

• VQ partition of layer 1 
depicted in the input space
– convex regions



MASO spline partition

• Toy example:  3-layer “deep net”
– Input x:  2-D (4 classes)
– Fully connected | ReLU (45-D output)
– Fully connected | ReLU (3-D output)
– Fully connected | (softmax) (4-D output)
– Output y: 4-D

• Given the partition region 
containing     the layer
input/output mapping is affine

z(x) = AQ(x)x+ bQ(x)

Q(x)
x

x



MASO spline partition

• Toy example:  3-layer “deep net”
– Input x:  2-D (4 classes)
– Fully connected | ReLU (45-D output)
– Fully connected | ReLU (3-D output)
– Fully connected | (softmax) (4-D output)
– Output y: 4-D

• VQ partition of layer 2 
depicted in the input space
– non-convex regions due to 

visualization in the input space



MASO spline partition

• Toy example:  3-layer “deep net”
– Input x:  2-D (4 classes)
– Fully connected | ReLU (45-D output)
– Fully connected | ReLU (3-D output)
– Fully connected | (softmax) (4-D output)
– Output y: 4-D

• Given the partition region 
containing     the layer
input/output mapping is affine

x

z(x) = AQ(x)x+ bQ(x)

Q(x)
x



MASO spline partition

• Toy example:  “Deep” net layer 
– Input x:  2-D (4 classes)
– Fully connected | ReLU (45-D output)
– Fully connected | ReLU (3-D output)
– Fully connected | (softmax) (4-D output)
– Output y: 4-D

• VQ partition of layers 1 & 2 
depicted in the input space
– non-convex regions



learning

learning epochs (time)

layers 1 & 2



local affine mapping – CNN

WLOG
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local affine mapping – CNN

Fixed, different

in each 
partition region

AQ(x), bQ(x)



matched filters



deep nets are matched filterbanks

z

(L)(x) = AQ(x)x+ bQ(x) z

(L)(x)

• Row c of            is a vectorized 
signal/image corresponding to class c

• Entry c of deep net output = 
inner product between row c and signal

• For classification, select largest output;
matched filter!

AQ(x)

c



deep nets are matched filterbanks



data memorization



orthogonal deep nets



partition-based signal distance



partition-based signal distance



partition-based signal distance



additional directions

• Study the geometry of deep nets and signals via VQ partition

• Affine input/output formula enables explicit calculation of the 
Lipschitz constant of a deep net for the analysis of stability, 
adversarial examples, …

• Theory covers many recurrent neural networks (RNNs)



additional directions
• Theory extends to non-piecewise-affine operators (ex: sigmoid)

by replacing the “hard VQ” of a MASO with a “soft VQ”
– soft-VQ can generate new nonlinearities (ex: swish)



summary
• A wide range of deep nets solve function approximation problems using 

a composition of max-affine spline operators (MASOs)
– links to vector quantization, k-means, Voronoi tiling

• Input/output deep net mapping is a VQ-dependent affine transform 
– enables explicit calculation of the Lipschitz constant of a deep net for the 

analysis of stability, adversarial examples, . . . 

• Deep nets are (learned) matched filterbanks
– new insights into dataset memorization 

• Theory is constructive 
– inspires orthogonalized deep nets 
– new geometric distance via Hamming-VQ distance



max-affine
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